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Stress Intensity Factors and Kink Angle of  a Crack 
Interacting with a Circular Inclusion Under Remote Mechanical 

and Thermal Loadings 

Saebom Lee,  Seung Tae  Choi, Youn Young Earmme* 
Department o f  Mechanical Engineering, Korea Advanced Institute o f  Science and Technology, Science 

Town, Daejon 305-701, Korea 

D a e  Youl Chung 
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A problem of a circular elastic inhomogeneity interacting with a crack under uniform 

Ioadings (mechanical tension and heat flux at infinity) is solved. The singular integral equations 

for edge and temperature dislocation distribution functions are constructed and solved numeric- 

ally, to obtain the stress intensity factors. The effects of the material property ratio on the stress 

intensity factor (S1F) are investigated. The computed SIFs are used to predict the kink angle 

of the crack when the crack grows. 
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I. Introduction 

Composites deriving advantageous properties 

from a combination of two or more components 

are used in numerous structural applications. 

Ceramics, metals, and polymers are commonly 

used as a matrix, while inclusions are chosen to 

tailor the desired properties of composites. For 

example, it is well known that fibrous composites 

have a fairly high longitudinal tensile strength 

and stiffness comparable or superior to those 

of structural metals (Dvorak, 2000) and brittle 

materials (Cha et al., 1998). Together with the 

stresses imposed by external loadings, composite 

materials must support residual stress due to 

thermal strain, moisture absorption, inelastic de- 

formation, and phase transformation strain. The 

residual stress field either alone or in superposi- 
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tion with the external loadings may cause some 

reliability problems including fiber matrix inter- 

face decohesion and matrix cracking. 

In order to assess the reliability problems of 

fiber reinforced composites, the interactions be- 

tween point singularities (such as edge disloca- 

tion or point force), cracks, and inclusions are 

analyzed via the Muskhelishvili's complex poten- 

tial method by several researchers. Perlman and 

Sih (1967) solved the problem of a circular arc 

interface crack which is located between an in- 

clusion and an infinite matrix under the remote 

mechanical loading. Atkinson (1972) analyzed 

an interaction problem between an inclusion and 

a straight crack, which is embedded in an infinite 

matrix with radial direction under the remote 

mechanical loading. Chao and Lee (1996) pres- 

ented a solution for the same interaction problem 

with a crack located at arbitrary position under 

heat flux, which had some critical errors, as found 

by Chung et al. (2001). On the other hand, Lee 

et al. (1999) presented a solution for an inclusion 

with a singularity in an infinite matrix by ap- 

plying the Suo's complex potential method to 

circular interface. 
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In this study, the problem of a matrix crack 

around an inclusion in an infinite matrix under 

the remote mechanical  loading and heat flux is 

solved. The effect of  an inclusion on a crack is 

studied by calculating the SIFs at the crack tip as 

the material property ratios and the crack loca- 

tion vary. The effect of  mode mixity, i.e., the ratio 

of Kz and Ku,  on the kink angle for the crack 

growth is also investigated. 

2. Problem and Solution 

The stresses and displacements are written in 

terms of the Muskhelishvili 's  complex potentials 

• (z) and /if(z) (Muskhelishvili ,  1953) and the 

Bogdanofrs  temperature potential ~9(zl (Bog- 

danoff, 1954) as fol lows:  

a~,-+aoo=2[Cl(z) + ~) (z )  ] ( I )  

a r t +  iar~,= q) (z) +,.(2 ( 1 z ) + z ( z - -  Iz) ~ ( z ) ( 2 )  

21~ ~ (  ux+ iuy) 
(3) 

1 I 

I 1 I 1 1 
where, ~ ( z ,  = ~ ( ~ ) - - ~  ~ ' (  ,~ ) - - ~  ~ ( ~ )  

and lg(z) is related to the resultant heat l]ux Q 

temperature T by O = f ( q x d y - q y d . x : )  : and the 
L 

- k l m  [O(,Z)] and T : R e [ O ( z ) ] .  Also, lbr a 

plane stress problem, h - =  ( 3 - - ~ ) / ( 1 + ; ) ,  B = A  

while for a plane strain problem, x = 3 - - 4 u ,  B = 

(I + u ) A  with A being C TE (the Coefficient of 

Thermal  Expansion) ,  ~', Poisson's ratio, and II, 

the shear modulus.  

As shown in Fig. 1 (a), an inclusion with unit 

radius is perfectly bonded to the matrix con- 

taining a crack of length c. Both materials are 

assumed to be isotropic and linear-thermoelastic.  

Remote uni lbrm mechanical tension a '~ and heat 

flux q~ are applied, which are inclined at the 

angle of co and p with respect to x-axis, respec- 

tively. The solut ion procedure is divided into 

two steps. In the first step shown in Fig. l ( b ) ,  

the problem in which an inclusion is perfectly 

bonded to the infinite matrix with no cracks 

under the remote loadings is solved. The loadings 

are tile mechanical tension and the heat flux. 

Perlman and Sih (1967) presented the solution 

lbr this problem under the mechanical  tension but 

it does not satisfy the cont inui ty  of displacement 

and tractions at interlace. We reconstructed the 

solution by the method described in the subse- 

quent section of Problem A. In the second step 

shown in Fig. l (c ) ,  Problem B, in which an 

inclusion and a crack are located in an infinite 

matrix with the prescribed heat tlux q,,, tractions 

an and at on the crack surfaces, is solved. There 

are not remote Ioadings. We solved Problem B 

using the methods by Lee et al. (1999), with qn. 

a,, and at on the crack surface canceling out the 

F i g .  1 

m" q" or" q" 
l',ttt,, I / Z _ ;  f?ff,.,~, / / L ,  

, " d c . . . .  

M""2ZJ 
7777 / / * /  

,~" ,1" ,/777 / / /  
ef ~ q~ 

(a) (b) (c) 

(a) Interaction between an inclusion and a crack /b) Problem A : an inclusion embedded in an elastic 
matrix under remote loadings (c) Problem B: an inclusion and a crack. Traction and heat flux are 
prescribed on the crack faces 
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respective values from Problem A. A crack is 

modeled as the sum of the edge and temperature 

dislocations. In consequence the singular  integral 

equat ions for dislocation dis tr ibut ion functions 

are obtained. These equat ions are transtbrmed 

into linear algebraic equat ions for numerical  cal- 

culation. The stress intensity factors (SIFs) are 

obtained from the calculated dislocation distr ibu- 

t ion functions (Hills et al.. 1996). 

(i) Problem A 

In Problem A, we obtain the stress and dis- 

placement fields in St and Sz to get tractions and 

displacements on the prospective crack surface 

(shown as dotted line in Fig. I (b)) .  

Problem A is independently solved for each 

loading type. For the remote mechanical  tension, 

Perlman and Sih (1967) presented the solution. 

Since their work contains  some calculation errors. 

we corrected their solution by the procedure des- 

cribed in Appendix A. For the case of  the remote 

heat flux, the solution can be found in Chung  et 

al. (2001). 

Fol lowing the procedures described above. 

the complex potentials for Problem A are found 

a s  

O * (z) = [ 

O " ( z ) =  

T 2 a ( z ) =  

f l -~') Oo~ (z ) ,  z~S, 

Oo~(z)- zO#( lz ). z~& 

'1-rt O= -r~16~lz '. z~S~ 
(l+a-2fl' 4 

6 ~ ((/-/~:l 0"® ( y = -  I I T / J '  ( { )  
4 [  I+~ 2 z z ( l + a l - ~ z O #  ,zE~5½ 

l+ "-'a '~ ':e ~" (l) 
I+~- . '~  4 - f " ~-a , " 

where 

(4) 

5) 

t6) 

6)oa(z) =q®/ k.ee-~z 
c t = { # , ( x z + l ) - t ~ ( ~ q + l ) } / { # x ( x a + l  +,ua(h', + I 1 } 

# = { / , ,  (< , -  t) - re (K1-  1)}/{/., ,(xz+ l )+ re (x ,+  I/} 
~, = { / 3 2 -  (I - ~,) B, }{ 2t4#a/(~('I-}- ttJ2Kl) } 
~ = {  BaT }{ 2/~t/~/(/~-F~,Ka) } 

7 "= (k~-k2)/ (k ,  +k23. 

(ii) Problem B 

A crack is modeled as the sum of the edge and 

temperature dislocations. Problem B is indepen- 

dently solved for each dislocation type. Integra- 

ting the solution for a single edge dislocation 

(Lee et al., 1999), we can obta in  the solution for 

the edge dislocations. Chao and Lee (1996) ob- 

tained the solution for the temperature disloca- 

tion with some errors, in which the stress and 

displacement fields are infinite at z = 0 .  The 

corrected solution can be found in Chung  et al. 

(2001). As a result, the complex potentials for 

Problem B are found as 

0 8 ( z )  = 
( I - - T )  ~os(g), g E S l  

B I OoB(z) -- ~*Oo ( ~ ). z ~ S 2  
(7) 

J 'l-:'ll0o'z:-rj, Oo~'z + l-:l:f',z +g:e~ z~S, 
~ s ( z  ) = I - y  

I &:e,rfl.g',, -,~.Og( I }+f{Z;- g z z~-¢, 
. . . .  ' z '  " t-~ . . . .  

(8) 

~ B ( z  ) = . , I--y z~& 
g',e' (9) 

~4z +A& z: *?~8g,z,--.1/'z,- ( _ y  z£S: 

where 

] f /  ( )1 , , 
OBo{Z' = 2;ri.] oo,s m~z-s;  ds 

L 

Oo(z:, = l~z f b,,,s, +ig;s:  
xi(~a4-11 ( z - s l  ds 

L 

[/ .O.o(z/-. /,5 (Z+I )  _ = 1 _ _ '  ° I)i&(s>: 
,,~i ( K2~- I ) Z(ZS-- I ) 

L 

_[ j  (z-s' ,  ~b.ls!~ -~ib,,:s.~]__as}. 
, zs - ] ' , -  t 

A= (ct+13~/I1-13', 
H = i a - # ) / ( l + ; 3 )  

213 
f " z i =  l + a - 2 f l  Re[O°(0)]+i 12-~aalm~O°':0"] 

1 -  d , 1 + ~  ~)~o¢0: 
I + a  ~. ~/~-r/2)O~.lO) V l ~  ~ -  ~ - - z  

( l+a)  { 3/~- a'., 
gizt  - Re[~o(0/] 

• (@+13) (I + a )  8 £ ( 0 )  
--1 Im [ ~)o"0) ] -- [ I -[- 13i/j2 

I - a  z 

ds 
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In the above, bo(s) is the distribution function 

of the thermal dislocations, and bx(s), by(s) are 

x and y components of the distribution function 

of the edge dislocations, respectively. They are 

determined from the following conditions : 

~ + a ~ + i ( ~ + ~ )  =0,  
(10) 

along the crack line L 

q~+qnS=0, along the crack line L (11) 

f bo(s) ds=O (12) 
L 

fEb ( ) + iby(s) ]d,- B fE fbo(,)d4]ds:O (13) 
L L 

Equation (10) represents the condition of trac- 

tion free on crack surface, Eq. (11) the insulated 

crack, and Eq. (12) and Eq. (13) the single- 

valuedness of temperature and displacement dis- 

locations, respectively. The subscript 2 in Bz 

means the value B corresponding to material 2 

(the matrix), while the subscripts (n and t) 

denote the normal and tangential components, 

respectively. The singular integral equations are 

obtained from Eqs. (10)~(13) .  For numerical 

calculation, we transform these singular integral 

equations into a set of linear algebraic equations 

by Gauss-Chebyshev quadrature formulae. Once 

if bo(s), bx(s), and by(s) are calculated, the 

SIFs are easily obtained (Hills et al, 1996). 

3. N u m e r i c a l  Resul t s  and Discuss ion  

Maple 7 (Monagan et al., 2001) is used lbr 

programming the calculation code. We construct 

a set of linear algebraic equations for each dis- 

location distribution functions, bo(s) bx(s), and 

by(s) by dividing every integration interval into 

five intervals. The SIFs at the various locations 

of a crack are final output of the numerical 

calculations. And the SIFs are normalized by 

Kt0 = o "= v ~r~,,/2 (14) 

under the remote mechanical tension which is K~ 

of the homogeneous material with w : ~ / 2  and 

K , o -  Blzc31Z~/~ q= (15) 
V'~_ fI+K) k 

under the remote heat flux which is Kn of the 

homogeneous material with p=rc/2 (Florence 

and Goodier, 1960). The geometry used for the 

calculation is shown in Fig. l (a) .  The SIFs are 

calculated at the left tip of the crack. The location 

of the left crack tip is (d, h) in Cartesian or 

( r ,  0) in polar coordinates. Other variables are 

found in the Section 2. 

3.1 Verification 
In order to verify our solution, we performed 

the computations of the following cases. 

(i) If all material properties of S~ and Sz are 

identical, then the material would be homo- 

geneous. And if the crack is well far from the 

inclusion, it would behave as if that in the homo- 

geneous material. We compare the calculated 

values in the two above cases with the theoretical 

values (Eqs. (14)~(15) )  for the homogeneous 

5'2 material. In result, the calculated SIFs are 

identicaly confirmed to the theoretical values. 

(ii) The calculated SIFs are compared to FEM 

values. The inclusion of unit radius is located at 

Table I Mechanical properties used in FEM 

" ~  materials Inclusion 

properties ~ boron 
---...,., 

shear modulus /z 172.5 GPa 

Poissons ratio v 0.2 

CTE A 5.0/ma/m K 

heat conductivity k 18.2 W/mK 

matrix 

epoxy 

1.24 GPa 

0.4 

57.6 pm/mK 

0.45 W/mK 

15 

12 

9 
LL 

6 

-3 

-6 

-9 

-12 

Fig. 2 
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the origin with the crack of  length c : 0 . 2  along 

the x-axis ( h = 0 ) .  The posit ion of  the left crack 

tip is (d ,  0). Remote uniJ'orm heat flux q~ is 

applied with p : r c / 4 .  The materials are consi- 

dered as the Boron and the epoxy. Their  proper-  

ties are listed in Table  1. and the results are 

shown in Fig. 2. The solid and dotted lines are 

the numerically calculated results for I~'~ and Kn,  

respectively. The symbols, • and • are respec- 

tively FEM values. It is noted that the both results 

are indistinguishable. 

3.2 Calculations 

We first investigate the effect of  various para- 

meters on the SIFs, and then analyze the crack 

behaviors in engineering composi te  materials. 

The parameters which affect the SIFs are the 

material property ratios 7"c, ?'A, 7,~ to be defined 

later, the magnitudes o "m, q~ and inclined angles 

w, p of  the remote Ioadings, the length of  the 

crack c. and the relative position of  the crack tip 

to the inclusion (d.  h) or  ( r ,  0).  Since we are 

concerned about the micro-cracks  around an in- 

clusion, the length of  the crack is chosen to be 

the same with the size o f  the inclusion. It is lbund 

that the effect of  the larger than unit crack length 

c is negligible for the our cases. The effect of  

the material property ratios and the remote load- 

ing angles are investigated in the Section 3.2.1 

by obtaining the SIFs  for various ratios of  the 

material properties of  the inclusion and matrix 

under the selected remote loading angles. The 

calculated SIFs are plotted as a function o1" the 

location of  the crack. Since the effect of  consi- 

dered here due to the normal izat ion of  the remote 

loadings would be in propor t ion  to the magni- 

tude, it is not the calculated SIFs by Kz0 and 

A'n0 (Eqs. ( 1 4 ) ~ ( 1 5 ) ) .  For  applicat ion exam- 

ples, we obtain the SIFs  and the kinking angle 

for a crack in the engineering composi te  ma- 

terials in the Section 3.2.2 where the ceramic 

part iculate-reinforced metal matrix composite,  

S iC-AI  (Han et al., 1999) and the metal part icle-  

reintbrced ceramic matrix composite,  Ni-AIzO3 

(Jin and Batra, 1999) are selected. 

Each of  all figures (Figs. 3 ~ 2 0 )  is classified 

into three classes (a), (b),  and (c) which are 

labeled at the bottom of  each figure (such as Fig. 

3(a) ,  Fig. 5(b) ,  etc.) according to the location of  

the crack. In the class (a), the crack is on x-axis  

(that is, h : 0  and d arbi t rary) ,  in the class (b) 

the crvck tip is located on y-axis  ( d : 0  and h 

arbi trary) ,  and in the class (c) 0 varies with the 

same distance, r = ~ / ( d 2 + h 2 ) = l . I ,  it should be 

noted that the negative values of  KI in all the 

figures are meaningless, since the crack surface 

contacts and, they are regarded as zero. However,  

we retain negative values since in combina t ion  of  

the remote mechanical  tension and heat flux, the 

total resultant Kt can be positive. 

3.2.1 Effect of material  property ratios and 
remote loading angles 

The material  properties affecting the solution 

are the shear modulus  It, the C T E  A, the therrnal 

conduct ivi ty  k, and Poisson's ratio v. The eflbct 

of  is not presented here since its effect on the SIFs  

is lbund to be negligible. Hereafter, we use the 7" 

with no subscript as a generic term of  the ratio of  

material properties. The ratio of  each material 

property is defined as lbl lows : 

~" c =/.zl/t~z 

7 A = A 1 / A 2  

~'~ = kl/k2 

(16) 

(17) 

(18) 

In Eqs. ( 1 6 ) - - ( 1 8 ) ,  7c, 7A, and )'j, are the shear 

modulus ratio, the C T E  ratio, and the thermal 

conductivi ty ratio, respectively. Subscript I and 2 

indicate respective materials (the inclusion and 

matrix as in Fig. 1). The remote loading angles 

w and p are selected to be : r /2  and zc/4. The 

calculated SIFs are shown in Figs. 3--  10. Under  

each remote loading condit ion,  the SIFs  for two 

values of  7 ( = 1 0 ,  0.1) are plotted in the same 

figure. The SIFs for the case of  7"= 10 are denoted 

by the solid points and while the case of  7"=0.1 

by the open points (only the results lbr 7 = 1 0  

and 0.1 are presented here since for other values 

o1 ) ' ( ~ 1 )  we obtained the similar results to 7-= 

10 and for 2"(<1) to 2 '=0.1) .  The effects o f ) ' c  

under the mechanical  tension are shown in Figs. 

3--4,  in which 7 A = ? ' h = l .  The effects of  ?%, ?'A, 

and )'4 under the heat flux are shown in Figs. 



Stress Intensity Factors a n d  Kink  Angle o f  a Crack Interacting with a Circular Inclusion Under  ... 1125 

5 ~ 6 ,  Figs. 7 ~ 8 ,  and Figs. 9 ~  10, respectively. It 

is noted here that when the effect o f  a single 

material property ratio is investigated, all other 

material property ratios are set to be unit. 

As shown in Figs. 3 ~ 1 0  with labels (a) and 

(b),  e.g., Fig. 3 (a) ,  3 (b ) ,  Fig. IO(b), etc., the 

F i 
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Effect o f  7c on the SIFs under a ® = l ,  w ~/2,  q®:0 ,  where (ai h = O ( b )  d : 0  (c) r = l . l  

Og 

LL 

~ oo 

: 3 

• K~ to~ ~.=I0 
n • ~, for f~=lO 

o ~ for r,;=O. 1 
: '  e, K. for y~=O 1 
n 

d 
(a) 

of,~ 

0~o 

O56 

LI. 0 ~ '  
o4~ 

N 04'1. 

oat,  

(Ig 

• 0B 

o nll'l ~ 05  
cc ~ 04 

c ~3  
o 

r 0 2  

a 
01 

h 

Fig. 4 

E: 

u 

o 

• t ~ j .  

t~,l' . , . . . . .  ,9 ~. %-%~J 

(c !  

Effect of" 7c on the SIFs under cy®=l, w: ,n' /4 ,  q==O, where (a) h=O (b) d = O  fc) r = l . I  

16 

1,4 

t..L 17 

10 

N 2 ~ 

~ ,7,1 

O2 

Fig. 5 

• ~, for y.~=10 

KN, for  r-o=0.1 

~2 

~3 

It.  

0 2  

LL 12 

o ~  

0 r~ C4 

02  

0.3 

0 2  

. . . J  
I i  r _ ' , 

d h 0 

(a) (b) (c) 

Effect of 7c on the SIFs under o'==0, q = = l ,  p=,n'/2, where (a) h = 0  (b) d = 0  (c) r = l . I  

12  

i ¢  
LL 

0a  

!o 
0 2  

0 0  

-02 

" OB 

t.L 

• ,G ~ O4 
- - A - -  Km fo r  7~=10 i 

I o K, for i o = 0 1  
o 2 i ~- K = f ° r f ~  = 0 1  ; 

_ _  . . . .  

Fig. 6 

f t I . . . .  
s s 6 I 2 : • s e 

d h 
(a) (bl 

~ o6 
~ 0 5  • - - A  
~ O4 

~ o3 
O2 

OO o~- - I I . i -  

oo.~ o~Tt o 2 x  oJTt o4~  o 5 ~  

o 
(c)  

Effect of  7c on the SIFs under o==0,  q = = l ,  p=a'/'4, where (a) h = 0  (b) d = O  (c) r = l . l  



1126 Saebom Lee, Seung Tae ChoL Youn Young Earmme and Dae Youl Chung 

norma l i zed  SIF seems to converge  to a single 

value  as the dis tance of  the crack,  7 f rom the 

inc lus ion  becomes larger. Fo r  all k inds  of  the 

mater ia l  propert ies ,  the tendencies  in the var ia-  

t ions  of  SIFs  for 7 = 1 0  and  7 = 0 . 1  are oppos i te  

to each other.  

Fig. 7 
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To discuss more closely the effect of  the para- 

meters, we classified the cases into (i) and (ii) as 

follows : 

(i) Under  the remote mechanical  tension (o "~-- 

1, q ~ = 0 )  

The SIFs for c0=n ' /2  are shown in Fig. 3 and 

for co=~'/ '4 in Fig. 4. I() for the case of 7 c = 1 0  

appreciably decreases as the crack tip on x-axis 

approaches the inclusion as shown in Fig. 3(a) 

and Fig. 4(a) .  while it slightly decreases, as 

shown in Fig. 3(b) and Fig. 4 (b) ,  as the crack tip 

on y-axis approaches to the inclusion. In case 

of ~ = ~ / 2 ,  Kn at the crack tip on x-axis is 

definitely zero as in Fig. 3(a).  But it is not zero at 

the crack tip on y-axis (Fig. 3 (b ) ) .  We can 

appreciate the effect of  the remote loading angles 

from the difference in Fig. 3 and Fig. 4. Although 

the tendenciy is similar, the magnitude of KI 

dominates  for co----zr/2 while KI and K ,  show 

almost same magnitudes for w=zc/4 .  

(ii) Under  the remote heat flux (o '==0,  q®= 1) 

The results are shown in Figs. 5--10.  The 

difference in the temperature between the upper 

and the lower surfaces of an insulated crack 

occurs under  the remote heat flux. K n  is, there- 

fore, dominant ,  as in the homogeneous case 

(Chao and Lee, 1996). To discuss more closely 

the effect of  7c, 7A, and 7k, we present as follows : 

- Effect of  7c (p= ,n ' / 2  in Fig. 5 and p=zc/4 in 

Fig. 6) 

Compared to the cases of 7A or 7k I Figs. 7 

10), the variations of SIFs are not relatively 

severe. The effect of the loading angle p is 

negligible with comparing Fig. 5 and Fig. 6. 

- Effect of  ~'A (p=Z r / 2  in Fig. 7 and p=zr /4  in 

Fig. 8) 

it is seen in Fig. 7(a) and Fig. 7(b) that the 

magnitude of K n  is very large when the crack is 

located in the vicinity of the inclusion,  and 

small as the crack becomes more distant from 

the inclusion.  This means that the effect of  7A 

on the SIFs is significant near the inclusion. 

- Effect of Yk (p= ,n ' / 2  in Fig. 9 and p=zr /4  in 
Fig. 10) 

Ku  for the case of  7k = 1 0  increases as the 

crack tip on x-axis approaches to the inclusion 

as shown in Fig. 9(a) and Fig. 10(a). As seen 

in Fig. 9, the convergences of SIFs tbr 7k are 

poor in comparison with the cases of 7c and 7a. 

It may be due to the fact that the effect of  7k on 

the SIFs is long-ranged compared to 7c and 7A. 

3.2.2 Composites 
In this subsection, we consider two typical 

material combinat ions  of, S i C ( i n c l u s i o n ) - A l  

(matrix) and Ni( inc lus ion)-AlzO3(matr ix)  com- 

posites and compute the SIFs as shown in Figs. 

11 -- 14. The kinking angle ,t"2 which is obtained 

from the calculated SIFs in the composites is 

shown in Fig. 17--20. The putative crack segment 

kinking out the plane of the crack at an angle £2 

shown in Fig. 15 is referred to as the kink crack. 

The original crack will be referred to as the 

parent crack. The kinking angle ,.(2 for which 

Kt~ = 0  is plotted as a function of g; in Fig. 16 

which was taken from Hutchinson and Suo 

(1990). Here KIt is the mode II SIF at the tip of 

the kink crack, and gris the measure of the mode 

11 to the mode I SIF for the parent crack defined 

by t / / '= tan  -l (Kn/K1) .  The material properties of 

SiC, AI, Ni, and AI203 are listed in Tables 2 and 

3. The material property ratios are 7c=7 ,  7A = 

0.19, 7,~=0.70, for S iC-AI  and 7c----0.47, 7A = 

2.47, 7h=1.52 for Ni-AI203. Calculat ions  are 

Table 2 Mechanical properties of SiC" and AI 

- - - ~ _  __ materials i Inclusion matrix 

properties ~ I SiC [ aluminum 

shear modulus /2 I 184.2 GPa 26.3 GPa 

Poissons ratio t, 0.14 I 0.33 

CTE a 4.5/2m/mK ~_23.6/2m/mK 

heat conductivity k }125.6 W/mK] i 8 0 ~  

Table 3 Mechanical properties of Ni and AI2Oa 

matrix ~ ' - ~ - .  materials] Inclusion 
properties ~ Ni A IzOa 

shear modulus /2 76 GPa 161.4 GPa 

Poissons ratio v 0.31 0.27 

CTE A 13.1 /2m./mK 5.3 btm/mK 

heat conductivity k 160.7 W/mK ,i 40 W/mK 
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performed for the respective remote loadings with (i) Stress intensity factors 

w : p : ~ r / 2  and the results are summar ized  as U n d e r  the remote mechanical  tension, the SIFs 

fol lows for the crack in S i C - A I  and Ni-AIzO3 (Fig. I I 

~ o~ 
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The SIFs tbr the crack in Ni-AI203 under a®=O, q ' =  1, p=Tr/2 where (a) h = 0  (b) d = 0  (c) r =  1. I 
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A Y kink crack 

d [)~" c r a c k  

Fig. 15 Conventions and geometry 

26 

0 ~ ,  

Fig. 16 

i 

;o" ;o" ;o" 

Kink angle, ,Qas predicted by/l't~ =0,  where 

and Fig. 12, respectively) are very similar to those 

for the case of  T a = I 0  and ) 'c=0.1 in Fig. 3, 

respectively. For  S i C - A I  under the remote heat 

flux, (shown in Fig. 13), it is found that both ]-(j 

and /'(n are zero at the value of  h-~ 1.2 (Fig. 13 

(b)) in which we set / £ ) = 0  if the value of/-(1 is 

negative. 

(ii) Kink angles 

As seen in Fig. 16, i f  the value o f /£~ ;  is zero, 

is zero irrespectively of  the value of  / ( ;  (the 

crack will not kink).  I [" /( ;  vanishes with non 

van i sh ing / (H,  the crack kinks with the maximum 

magnitude of  22(~73.5°) .  Under  the remote 

mechanical  tension, ~ for the parent crack on 

x-axis in S i C - A I  is zero as shown in Fig. 17(a). 

,,Q is positive for other  locations of  the crack. It 

means that the crack in S iC-AI  kinks away from 

the inclusion when a kinking occurs. As shown in 

Fig. 18(b) (the crack tip on y-axis) and Fig. 18 

(c) (the crack tip at a fixed distance of  r = l . l ) ,  

the kink crack in Ni-Al2Oa grows toward the 

inclusion, while the crack on x axis (Fig. 18(a)) 

does not kink. Under  the remote heat flux, the 

value o f , Q  is maximum at most locations of  the 

i 

,L 4 

Fig. 17 
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d h 0 
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Kink angle for the crack i n S i C - A l u n d e r o  " ~ = l , w = ; r / 2 , q ~ = 0 , w h e r e  (a) h : O  (b) d = 0  It) r = l . l  
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Kink angle for the crack in Ni-AI203 under d~=0, q~= I, p=n ' /2 ,  where (a) h = 0  (b) d = 0  (c) r = l . I  

crack as seen in Figs. 19 and 20 except the Fig. 

19(c). In Fig. 19(c), ,.(2 cont inuously varies from 

a maximum to min imum value with 0 indicating 

the location of  the crack at the same distance 

from the inclusion. The sudden change of  ~Q in 

Fig. 19(b) seems to be insignificant in a practical 

sense since/x~z is very small and changes its sign. 

4. Conclusion 

are computed.  Then, we analyze the crack 

behaviors  in the engineering composi te  materials 

(S iC-AI  and Ni-AI203) by obtaining the SIFs at 

the crack tip in composites and investigating 

mode mixity, i.e., the ratio o f / f )  and /x~z, which 

is a major  factor in the determinat ion of  the kink 

angle for the crack growth. 

We summarized the results tbr the types of  the 

remote Ioadings as tbllows : 

The problem of a crack around an inclusion in 

an infinite matrix under the remote mechanical  

loading and heat flux is solved. The proposed 

method is based on the complex potential  theory 

and dislocation functions which are used to 

formulate the crack problem. The resulting sin- 

gular integral equat ions are transtbrmed into the 

set of  l inear algebraic equat ions so that the un- 

known dislocation functions and the SIFs  at the 

crack tip can be numerical ly calculated. 

To investigate the interactions between the in- 

clusion and the crack embedded in the matrix, the 

SIFs for various condi t ions  (various values of  

)'c, 7a, 7~,, o'~, q~, co, p, the location of  the crack) 

(i) Under  the remote mechanical  tension 

It is found that / f l  lbr the case of  ? ' c > l  de- 

creases as the crack gets closer to the inclusion. 

The magnitude of  KI is dominant  tbr w = n ' / 2  at 

the most locations of  the crack while Kt and /x)t 

are of  almost same magnitude for co=n ' /4 .  It is 

found that there are some locations where the 

energy release rate ~(] (--/x~z~ +/x~n) is effectively 

zero. The kink angle ,(2 obtained from the cal- 

culated SIFs under the remote mechanical  tension 

with co=n-/2 shows that the crack in SiC-A1 

kinks away from the inclusion while it kinks 

toward the inclusion in Ni-AI203. 
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(ii) Under the remote heat flux 

The effect of 7A on SIFs is significant only near 

the inclusion while that of )'k is long-ranged 

compared to other material property ratios )'a 

and 7a. 
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Append ix  A 

The solution for the problem of an inclusion 

located in an infinite matrix without a crack 

under the remote mechanical tension is presented 

here as below. 

We start with the equations of Perlman and Sih 

(1967) with the present notation 

• ,~ ( z )  = 
2 [F(z)+ ]+aa G(z) ], z~S,  

[ I+ /3  F(z) +G(z) ], z~Sz 
(AI) 

S2~ (z) = 
l+~ 1-;3 , G(z) ] 2 [ ~ F ~ z )  l+a Z~Sl - l - a  

(A2) 
1 +/3 [F (z) - G I',z) ], zC $2 
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where, F ( z ) = d o + ~ ,  G ( z ) = e o + ~ ,  a', f l a re  

Dundurs parameters, and the subscript M denotes 

the mechanical loading case. 

To obtain the unknowns, do, dz, eo, and ez, we 

use the holomorphic conditions for ~A (Z), z ~ S I  
and ~u a (z) z E &  and the asymptotic behavior of 

• ~ (z), zES2 and ~A (Z), zES2. Since the work 

by Perlman and Sih (1967) contains some errors 

in obtaining the unknowns, we derived the correct 

solution as follows: 

Equation (AI) is rewritten as 

~A 1+,8 r & l+0t 
M , z ) = ~ .  [ d 0 + ~ 2 - + ~ x ( e 0 + ~ ) ]  (AI - I )  

whence the requirement of the non-singularity at 

z = 0  yields 

. l + a  
dz+~_  a C2=0 (A3) 

We have the relation 

hence we can obtain in an analogous way to the 

derivation of Eq. (A3) 

# , l + a  
d0-1-1 _ a e0=0 (AS) 

1+13 

which originates from the holomorphic condition 

of ~ ( z )  at z = 0 .  

On the other hand, the asymptotic behavior of 

• ~ (z), z~S2 and gr~ (z), z~S2 is written as 

A d ~ al az z ~ S z  (A6) 
• ,~ (z)  = T + z - + 7 + . . . ,  

gr~ ( z )=  - a ~ ' e  z,~o+ & + b z  + . . .  z ~ &  (A7) 
2 z z- 

Equation (A6) and (A7) are substituted into Eq. 

(A4), to obtain the asymptotic behavior of ..QM a 

(z). By comparing the coefficients of constants in 

Eq. (A1) and (A2), respectively with (A6) and 

the expression ~A (Z), described above we get 

o -~ (1--13) . (1+13) 
- d o +  ~" eo (A8) 

4 2 _ 

_ _  O - ¢ °  

d2 - c2 = e 2~ (A9) 
(1+131 

From Eq. (A3) and Eq. (A9). we have 

d ~ ( l - - a )  e2 ~ (AI0) 
e2= 2 (1+13) 

- ~  ( l+a)  
d2~-- 2 (l ff-13) e2~ (Al l )  

Also from Eq. (A5) and Eq. (A8), we have 

a ~ ( l+a)  
do= 2 ( 1 + a - 2 1 3 )  (AI2) 

- - d  ~ (1--a)  ,8 (AI3) 
e0= 2 ( l + a - - 2 f l )  (1+13) 

By substituting Eqs. (AI0) - - (A13)  into Eqs. 

(AI) -- (A2), the followings are obtained : 

( l + a )  d ~ z ~ S ,  
¢ ~ ( z ) =  ( l + a - 2 f l )  4 '  (AI4) 

a ~ ( a - 1 3 )  a °° e ' ' °  

4 - ~  (1+13) 2 z2 , z ~ S 2  

Ill+a) a ~ (l+a) ~= ~.~1 
.QA (z) fl+a-2fl') 4 ~ ~ T  e f l '  zESI 

= (AI5) 
I+a+2/3 o" + a ® fl'~ z~S z 
I+a-2fl 4 2 z ~' 

Eqs. ( A I 4 ) - - ( A I 5 )  represent the terms due to 

the mechanical loading on the right hand side of 

Eqs. (5) -- (6), respectively. 




